Home Regulatory bluebird bio Receives FDA Accelerated Approval for SKYSONA®(elivaldogene autotemcel)Gene Therapy for Early, Active Cerebral Adrenoleukodystrophy (CALD)

bluebird bio Receives FDA Accelerated Approval for SKYSONA®(elivaldogene autotemcel)Gene Therapy for Early, Active Cerebral Adrenoleukodystrophy (CALD)

by admin
0 comment
Pfizerbiontech, First, FDA, Authorized, Covid19, Vaccine, Emergency, Use, In, Children, Under12, American, German, Multinational, Pharmaceutical, Biotechnology, Good, News, Approval, Euagency, Coronavirus, Vaccine, First, Opportunity, Children, Fda, WHO, Stringent, Authority, Paediatrics.

Synopsis:

  • SKYSONA is the first FDA approved therapy shown to slow the progression of neurologic dysfunction in boys with this devastating and fatal neurodegenerative disease.
  • Elivaldogene autotemcel is made specifically for each recipient, using the recipient’s hematopoietic stem cells
  • CALD is a rare, progressive, neurodegenerative disease that primarily affects young boys and causes irreversible, devastating neurologic decline, including major functional disabilities such as loss of communication, cortical blindness, requirement for tube feeding, total incontinence, wheelchair dependence, or complete loss of voluntary movement.

bluebird bio, Inc. (Nasdaq: BLUE) today announced the U.S. Food and Drug Administration (FDA) has granted Accelerated Approval of SKYSONA® (elivaldogene autotemcel), also known as eli-cel, to slow the progression of neurologic dysfunction in boys 4-17 years of age with early, active cerebral adrenoleukodystrophy (CALD). The Company also confirmed that the previous clinical hold on the eli-cel clinical development program has been lifted.

About SKYSONA

  • API– Elivaldogene autotemcel
Elivaldogene autotemcel  structure

Elivaldogene autotemcel Structure

  • Description: Elivaldogene autotemcel, sold under the brand name Skysona, is a gene therapy used to treat cerebral adrenoleukodystrophy (CALD). It is being developed by Bluebird bio. Elivaldogene autotemcel is made specifically for each recipient, using the recipient’s hematopoietic stem cells
Elivaldogene autotemcel  moa

Elivaldogene autotemcel Moa

  • Class –Adrenoleucodystrophy gene therapies; Gene therapies; Haematopoietic stem cells therapies
  • Mechanism of Action –ALDP expression stimulants; Cell replacements
  • Orphan Drug Status –Yes – Adrenoleucodystrophy
  • Biologic Classification -Gene Therapies
  • Indication – Elivaldogene autotemcel is a gene therapy indicated for the treatment of early cerebral adrenoleukodystrophy (CALD) in patients less than 18 years of age, with an ABCD1 mutation, for whom a human leukocyte antigen (HLA)-matched sibling hematopoietic stem cell donor is not available.
  • Absorption -As elivaldogene autotemcel is a gene therapy comprising autologous cells which have been modified ex vivo, conventional studies on pharmacokinetic properties are not applicable.
  • Volume of distribution -As elivaldogene autotemcel is a gene therapy comprising autologous cells which have been modified ex vivo, conventional studies on pharmacokinetic properties are not applicable.
  • Protein binding -As elivaldogene autotemcel is a gene therapy comprising autologous cells which have been modified ex vivo, conventional studies on pharmacokinetic properties are not applicable.
  • Toxicity -There is no scientific or clinical data regarding the LD50 or overdose of elivaldogene autotemcel.

Important Safety Information

BOXED WARNING: HEMATOLOGIC MALIGNANCY

Hematologic malignancy, including life-threatening cases of myelodysplastic syndrome, has occurred in patients treated with SKYSONA. Patients have been diagnosed between 14 months and 7.5 years after SKYSONA administration, and the cancers appear to be the result of the SKYSONA lentiviral vector, Lenti-D, integration in proto-oncogenes. Monitor patients closely for evidence of malignancy through complete blood counts at least every 6 months and through assessments for evidence for clonal expansion or predominance at least twice in the first year and annually thereafter; consider bone marrow evaluations as clinically indicated.

Hematologic Malignancy

Myelodysplastic syndrome (MDS), a hematologic malignancy, has developed in patients treated with SKYSONA in clinical studies. At the time of initial product approval, MDS had been diagnosed in three patients after administration of SKYSONA. The clinical presentation for the three patients varied. Two patients who were diagnosed at 14 months and 2 years after treatment with SKYSONA had preceding delayed platelet engraftment. The third patient had normal blood counts from 18 months to 5 years following treatment with SKYSONA and presented 7.5 years after SKYSONA administration with symptomatic anemia and thrombocytopenia and was subsequently diagnosed with MDS with increased blasts. All 3 patients underwent allogeneic hematopoietic stem cell transplant; 1 patient required pre-transplant chemotherapy and total body irradiation as treatment for excess blasts prior to transplant and 1 patient underwent total body irradiation as part of his conditioning regimen.

SKYSONA Lenti-D lentiviral vector integration into proto-oncogenes appears to have mediated the three cases of hematologic malignancy. The hematologic malignancies diagnosed at 14 months and 2 years involved integration into the MECOM proto-oncogene and increased expression of the oncoprotein EVI1. All patients treated with SKYSONA in clinical studies have integrations into MECOM; it is unknown which integrations into MECOM or other proto-oncogenes are likely to lead to malignancy.

Because of the risk of hematologic malignancy, carefully consider alternative therapies prior to the decision to treat a child with SKYSONA. Consider consultation with hematology experts prior to SKYSONA treatment to inform benefit-risk treatment decision and to ensure adequate monitoring for hematologic malignancy. Consider performing the following baseline hematologic assessments: complete blood count with differential, hematopathology review of peripheral blood smear, and bone marrow biopsy (core and aspirate) with flow cytometry, conventional karyotyping, and next generation sequencing (NGS) with a molecular panel appropriate for age and including coverage for gene mutations expected in myeloid and lymphoid malignancies; and testing for germline mutations that are associated with hematologic malignancy.

Adverse Reactions

Most common non-laboratory adverse reactions (≥ 20%): mucositis, nausea, vomiting, febrile neutropenia, alopecia, decreased appetite, abdominal pain, constipation, pyrexia, diarrhea, headache, rash.

Most common Grade 3 or 4 laboratory abnormalities (≥40%): leukopenia, lymphopenia, thrombocytopenia, neutropenia, anemia, hypokalemia.

SKYSONA Clinical Data

The approval of SKYSONA is based on data from bluebird bio’s Phase 2/3 study ALD-102 (Starbeam) (N=32) and Phase 3 ALD-104 (N=35) study.

Both open-label, single-arm studies enrolled patients with early, active CALD who had elevated very long chain fatty acid (VLCFA) values, a Loes score between 0.5 and 9 (inclusive), and gadolinium enhancement on magnetic resonance imaging (MRI) of demyelinating lesions. Additionally, patients were required to have a neurologic function score (NFS) of ≤ 1, indicating limited changes in neurologic function. The efficacy of SKYSONA was compared to a natural history population.

Per protocol, patients treated with SKYSONA were assessed using the NFS and monitored for the emergence of six Major Functional Disabilities (MFDs) associated with CALD progression including loss of communication, cortical blindness, requirement for tube feeding, total incontinence, wheelchair dependence, or complete loss of voluntary movement.

The Accelerated Approval of SKYSONA is based on 24-month MFD-free survival. A post-hoc enrichment analysis in symptomatic patients assessed MFD-free survival from onset of symptoms (NFS ≥ 1) in SKYSONA treated (N=11) and untreated patients (N=7). SKYSONA treated patients had an estimated 72 percent likelihood of MFD-free survival at 24 months from time of first NFS ≥ 1, compared to untreated patients who had only an estimated 43 percent likelihood of MFD-free survival.

The most common non-laboratory adverse reactions (incidence ≥ 20%) are mucositis, nausea, vomiting, febrile neutropenia, alopecia, decreased appetite, abdominal pain, constipation, pyrexia, diarrhea, headache, and rash. The most common Grade 3 or 4 laboratory abnormalities (≥40%) include leukopenia, lymphopenia, thrombocytopenia, neutropenia, anemia, and hypokalemia. Please see SKYSONA Important Safety Information below, including a Boxed Warning for Hematologic Malignancy.

Enrollment is complete and all patients have been treated in both studies; follow-up in ALD-104 is ongoing. All patients who complete 24 months of follow-up in studies ALD-102 or ALD-104 are encouraged to participate in a long-term follow-up study (LTF-304) to continue monitoring safety and efficacy outcomes in boys treated with SKYSONA through 15 years post-treatment. On September 15, 2022, the FDA lifted the clinical hold that was put in place August 2021, prior to the completion of its review of the SKYSONA Biologics License Application.

CALD is a rare, progressive, neurodegenerative disease that primarily affects young boys and causes irreversible, devastating neurologic decline, including major functional disabilities such as loss of communication, cortical blindness, requirement for tube feeding, total incontinence, wheelchair dependence, or complete loss of voluntary movement. Nearly half of patients who do not receive treatment die within five years of symptom onset. Prior to the approval of SKYSONA treatment, effective options were limited to allogeneic hematopoietic stem cell transplant (allo-HSCT), which is associated with the risk of serious potential complications including death, that can increase dramatically in patients without a human leukocyte antigen (HLA) matched donor.

“Children with CALD and their families have been at the heart of bluebird’s mission since the company was founded more than a decade ago,” said Andrew Obenshain, chief executive officer, bluebird bio. “For the ALD community, this long-awaited approval represents significant hope and offers families a new option where, for many, there had been none. We are grateful to every individual who was involved in the development of SKYSONA and are committed to working with providers and payers to make this important treatment option available to patients and their families.”

“CALD strikes young boys in the prime of their development, robbing them of core neurologic functions necessary for survival. That is an unimaginable reality for any parent, and as a clinician, it is heartbreaking to have limited treatment options for these children and their families,” said David A. Williams, MD, Chief, Division of Hematology/Oncology, Boston Children’s Hospital. “After supporting the clinical development of SKYSONA for nearly a decade as a study site, Boston Children’s Hospital is extremely pleased that an FDA-approved therapy is now available for children who urgently need new therapies.”

“As one of the largest and most experienced pediatric gene therapy and stem cell transplant programs in the world, the University of Minnesota is committed to expanding access and advancing care and research for patients with rare diseases like ALD,” said Paul Orchard, MD, a pediatric blood and marrow transplant physician at the University of Minnesota Medical School and M Health Fairview Masonic Children’s Hospital. “It’s crucial for these patients and families to have another therapeutic option for cerebral ALD beyond blood stem cell transplantation utilizing cells from another donor, and we’ve seen firsthand the impact that gene therapy has on our patients. We are encouraged by progress we’re making to treat these rare and devastating diseases.”

As a condition of the SKYSONA Accelerated Approval, bluebird has agreed to provide confirmatory long-term clinical data to the FDA. bluebird anticipates that this will include data from the ongoing long-term follow-up study (LTF-304), which follows patients treated in clinical trials for 15 years, and from commercially treated patients.

About Cerebral Adrenoleukodystrophy (CALD)

CALD is a progressive and irreversible neurodegenerative disease that primarily affects young boys. The disorder is caused by mutations in the ABCD1 gene that affect the production of adrenoleukodystrophy protein (ALDP) and subsequently leads to accumulation of very long-chain fatty acids (VLCFAs), primarily in the white matter of the brain and spinal cord. This accumulation leads to the breakdown of myelin, the protective sheath that nerve cells need to function effectively, especially for thinking and muscle control. The onset of symptoms of CALD typically occurs in childhood (median age 7). Early diagnosis and treatment of CALD is essential, as nearly half of patients who do not receive treatment die within five years of symptom onset.

About bluebird bio, Inc.

bluebird bio is pursuing curative gene therapies to give patients and their families more bluebird days. With a dedicated focus on severe genetic diseases, bluebird has industry-leading clinical and research programs for sickle cell disease, beta-thalassemia and cerebral adrenoleukodystrophy and is advancing research to apply new technologies to these and other diseases. We custom design each of our therapies to address the underlying cause of disease and have developed in-depth and effective analytical methods to understand the safety of our lentiviral vector technologies and drive the field of gene therapy forward.

Founded in 2010, bluebird has the largest and deepest ex-vivo gene therapy data set in the world—setting the standard for industry. Today, bluebird continues to forge new paths, combining our real-world experience with a deep commitment to patient communities and a people-centric culture that attracts and grows a diverse flock of dedicated birds.

Weblink: https://www.chemrobotics.com

  • AgroPat Lite– Access 5500 pesticides with chemistry, Biology, Regulatory, and IP info. Covers the product information including formulation, combination, developer, innovator, existing intellectual property, regulatory requirement, biology data including spectrum, MOA, DFU, toxicity profile, and safety. (Designed for Business Development function)

You may also like

Leave a Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Our Company

Lorem ipsum dolor sit amet, consect etur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis.

ChemRobotics Times

Subscribe my Newsletter for new blog posts, tips & new photos. Let's stay updated!

Laest News

@2021 – All Right Reserved. Designed and Developed by Ample eBusiness

WP2Social Auto Publish Powered By : XYZScripts.com